Phos-tag™ 丙烯酰胺 Phos-tag™ Acrylamide說明書

Phos-tag™ 丙烯酰胺 Phos-tag™ Acrylamide說明書

Phos-tag™ Acrylamide

SDS-PAGE分離不同磷酸化水平的蛋白!

  在不使用放射性同位素的情況下,利用Phos-tag™ SDS-PAGE即可分離不同條帶中的磷酸化和非磷酸化蛋白。分離后的凝膠可用于Western blotting和質譜分析等后續實驗。

  Phos-tag™ SDS-PAGE操作簡單,只需在常規SDS-PAGE膠中加入Phos-tag™ Acrylamide 和Mn2+或者Zn2+即可進行實驗。在電泳過程中,磷酸化蛋白的磷酸基團與Phos-tag™中的二價金屬離子相結合,降低其遷移速度,從而可區分磷酸化與非磷酸化蛋白。

原理

phos-tag原理

優點、特色

??采用Phos-tag™ SDS-PAGE可輕松分離磷酸化蛋白

  ?無任何放射性元素及化學標記!

??可檢測不同磷酸化水平的磷酸化蛋白

  ?無需任何磷酸化抗體!

??適用于內源性蛋白的磷酸化分析!

案例、應用

【使用Phos-tag™ SDS-PAGE的磷酸化/非磷酸化蛋白比較】

我推薦使用Phos-tag ™ ——東京大學研究院醫學研究科 小川覺之

  Phos-tag ™ 是專為研究磷酸化蛋白而新開發出來的試劑。此產品使用方便,不但可用于體外實驗,還能定量分析體內蛋白的磷酸化水平。Phos-tag ™ SDS-PAGE 可用于常規電泳實驗,無需購買特殊設備,性價比高。傳統蛋白磷酸化的研究需要特異的磷酸化抗體、RI 等其它試劑,操作復雜,花費大,且放射性元素會有安全隱患,而Phos-tag ™ 的出現恰恰可以彌補這些缺點,為磷酸化蛋白研究提供新的方向。

磷酸化蛋白和非磷酸化蛋白利用Phos-tag ™ SDS-PAGE 的分離效果圖

  Lane 1 為非磷酸化蛋白,Lane 2-5 為磷酸化蛋白,各蛋白因磷酸化狀態不同而條帶遷移率也有所不同。

  磷酸化/ 非磷酸化蛋白的數量比、磷酸化程度、磷酸化蛋白的豐度等都可根據條帶遷移和條帶濃度求得。

【資料提供】

日本東京大學研究生院醫學系研究科

【二維電泳中的應用:分析hnRNP K 磷酸化異構體】

  小鼠巨噬細胞J774.1 經LPS 刺激后,裂解細胞,經過免疫沉淀法分離得到hnRNP K。在二維電泳中,一維是IPG 膠,二維是Phos-tag ™ SDS-PAGE,可分離hnRNP K 的異構體。利用質譜儀,可以確認不同的點代表不同的亞型或修飾蛋白。

二維電泳

  同一個等電點的位置上,不同位點發生磷酸化都可以被區分開來(例: spots 6 vs. 8 and spots 4 vs. 7)

【參考文獻】

Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Y. Kimura, K. Nagata, N Suzuki, R. Yokoyama, Y. Yamanaka, H. Kitamura, H. Hirano, and O. Ohara, Proteomics , Nov 2010; 10(21): 3884-95.

【結果提供】

  橫濱市立大學 生命納米系統科學研究科 生物體超分子系統科學專業 木村彌生(Dr. Y. Kimura)、平野久(Dr. H. Hirano)理化學研究所RCAI 小原收

【EGF 刺激前后MAPK 磷酸化水平的變化】

  常規SDS-PAGE 和Phos-tagTM SDS-PAGE 后迚行克疫印跡實驗分析EGF 刺激的A431 細胞中MAPK 磷酸化水平。

  摘自Kinoshita-Kikuta, E. et al., Mol.Cell. Proteomics. (2007)6: 356.

產品編號 產品名稱 產品規格 產品等級 產品價格
304-93526 ?Phos-tag?Acrylamide?AAL-107
5mM?Aqueous?Solution?Phos-tag?丙烯酰胺5mM水溶液
0.3mL 蛋白研究
300-93523 ?Phos-tag?Acrylamide?AAL-107
Phos-tag?丙烯酰胺
2mg 蛋白研究
304-93521 ?Phos-tag?Acrylamide?AAL-107
Phos-tag?丙烯酰胺
10mg 蛋白研究
134-15302 Manganese(II)?Chloride?Tetrahydrate氯化錳四水合物 25g for?Molecular?Biology

Phos-tag™ 系列磷酸化蛋白新方法!

  Phos-tag™是一種能與磷酸離子特異性結合的功能性分子。它可用于磷酸化蛋白的分離(Phos-tag™ Acrylamide)、Western Blot檢測(Phos-tag™ Biotin)、蛋白純化 (Phos-tag™Agarose)及質譜分析MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。

Phos-tag™ 的基本結構

Phos-tag基本結構

特點:

與-2價磷酸根離子的親和性和選擇性高于其它陰離子

在pH 5-8的生理環境下生成穩定的復合物

原理

 

相關應用

Phos-tag應用

相關產品

 產品名稱  用  途
 Phos-tag™ Acrylamide  分離: SDS – PAGE 分離不同磷酸化水平的蛋白
 SuperSep Phos-tag™  分離: 預制膠中含有50μM Phos-tag™ Acrylamide
 Phos-tag™ Biotin  檢測: 代替 Western Blot 檢測中的磷酸化抗體
 Phos-tag™ Agarose  純化: 通用柱層析,純化磷酸化蛋白
 Phos-tag™ Mass

Analytical Kit

 分析: 用于質譜 MALDI-TOF/MS 分析,提高磷酸化分子的檢測靈敏度

phos-tag™由日本廣島大學研究生院醫齒藥學綜合研究科醫藥分子功能科學研究室開發。

更多產品信息,請點擊:http://phos-tag.jp

1.???? Phos-tag? Acrylamide的溶解

5mmmol/ Phos-tag? 液體 (3v/v% 甲醇):

1)??? 10mg? Phos-tag? Acrylamide 里加入 0.1mL 甲醇

2)??? 使用槍頭攪拌混合直至完全溶解。

3)??? ?加3.2mL 蒸餾水, 用槍頭混勻。

2-8℃避光保存。不適合零度以下保存。建議保存時間6個月。

  ?注意:避免溶解過程出現白色懸浮顆粒。

2.???? α-Casein, from Bovine Milk, Dephosphorylated(038-23221),陽性對照(含有磷酸化和非磷酸化

  ?α-Casein),如何使用?

  ?用水或者上樣buffer溶解。用水溶解后,冷凍保存。電泳條件:Phos-tag? 50umol/L,分離膠濃度 10%。

  ?電流:30mM,1小時。

3.???? 用Alkaline Phosphatase(for Biochemistry)(018-10693)進行磷酸化蛋白的去磷酸化反應體系。

37℃,過夜。# 10 mg/mL phosphorylated protein 50 μL
# 0.50 M Tris/HCl buffer (pH 9.0) containing 0.10 M MgCl2 10 μL
# Sterilized water 39 μL
# Alkaline phosphatase(018-10693). 0.3 unit / 1 μL有一點需要注意:ALP活性化使用Mg離子,

  ?同的非磷酸化蛋白質用ALP處理的樣品的條帶和沒有用ALP處理的樣品的條帶的位置不同。

4.???? Phos-tag? SDS-PAGE實驗沒有成功分離磷酸化蛋白:

1) 使用α-Casein, from Bovine Milk, Dephosphorylated(038-23221)作為陽性對照,確認實驗條

件和試劑均沒有問題。

2) 可使用Phos-tag?Biotin檢測樣品中是否有磷酸化蛋白。確認有磷酸化蛋白后,再通過

Phos-tag ?SDS-PAGE進行分離鑒定。

3) 經質譜鑒定有表達磷酸化蛋白,建議增大樣品的含量,可使用Phos-tag ?Agarose進行磷酸化蛋白

的富集。磷酸化蛋白含量過低,會影響其分離效果。

4) 文獻報道有表達磷酸化蛋白,或者同源蛋白有表達磷酸化蛋白的,建議用Phos-tag? Biotin先確認

樣品中是否有磷酸化蛋白。

5) 建議樣品的pH值在7左右。酸性或者堿性條件下,Mn2+-Phos-tag?與磷酸化基團的特異性結合較

差。

6) 避免樣品中含有高濃度的還原劑,變性劑,表面活性劑等。β-巰基乙醇濃度不高于0.2M(或者5%)。

7) 進行Phos-tag? SDS-PAGE的佳樣品是純化的蛋白。如果是細胞裂解液,體外激酶反應液,組織均

漿液等,需要摸索佳的分離膠,Phos-tag? Acylamide的濃度。建議Phos-tag? Acrylamide濃度

從50uM開始摸索。

5.???? Phos-tag?SDS-PAGE凝膠用于Western Blotting實驗的優化建議:

1) 可以檢測的樣品包括體外激酶反應體系,細胞裂解液,組織均漿液。

2) 每孔樣品的上樣量是10~30ug(請根據蛋白表達量進行調整)

3) 制備樣品中含有的還原劑、變性劑、螯合劑、釩酸等會使電泳條帶發生彎曲或者拖尾。通過TCA沉淀或

滲析法降低雜質含量。

4) 建議樣品的pH值在7左右。如果加入上樣緩沖液后溶液顯黃色或者橙色,加入Tris緩沖液調整pH值為7。

5) 目的蛋白分子量大于60kDa,分離膠的丙烯酰胺濃度為6%;目的蛋白分子量小于60kDa,分離膠的丙烯

酰胺濃度為8%。

6) 如果樣品中含有大量蛋白,比如細胞裂解液,組織均漿液,Phos-tag? Acylamide濃度為5~25uM。

若目的蛋白濃度低,建議Phos-tag? Acylamide濃度為100uM。

7) Phos-tag ?SDS-PAGE凝膠用于Western Blotting實驗,濕法轉膜建議:10mM EDTA的轉移緩沖液

處理凝膠10min,不含有EDTA的轉移緩沖液處理凝膠10min。重復3次。強烈建議濕法轉膜

8) Phos-tag? SDS PAGE半干法轉膜建議:

????????????? i.????? 電泳后用含有EDTA的轉移緩沖液處理凝膠,EDTA的濃度為 100mM。100mM EDTA的轉移

緩沖液處理凝膠10min,不含有EDTA的轉移緩沖液處理凝膠10min。重復3次。

???????????? ii.????? 轉膜的電流值提高2%~3%, 延長時間2成。

??????????? iii.????? 轉膜的緩沖液加SDS,加到大約0.05~0.2%,轉膜效率會提高。

9) 使用目的蛋白的非磷酸化抗體即可。比如檢測各種腫瘤細胞系中Src激酶活性實驗,用Src的非磷酸化抗

體即可。

10) 和光的WIDE-VIEWTM Prestained Protein Siza MarkerIII(230-02461)可檢測作為轉膜效率,但是無

法判斷分子量。

11) 一般預染的蛋白marker在Phos-tag?SDS-PAGE中條帶會彎曲,無法判斷蛋白分子量。

12) 不能確認磷酸化蛋白和非磷酸化蛋白的分離,請進行常規的SDS-PAGE,Western Blotting實驗。比

對目的蛋白的遷移率。

13) 不能確認是因為蛋白發生磷酸化還是出現降解造成蛋白條帶遷移,請進行常規的SDS-PAGE實驗,確

認不會出現條帶遷移。

14) 目的蛋白磷酸化與非磷酸化分離效果不佳,使用α-Casein, from Bovine Milk, Dephosphorylated

(038-23221)作為陽性對照,確認實驗條件和試劑均沒有問題。如果確認能夠分離,調整分離膠,

Phos-tag? Acylamide的濃度。建議使用品質佳的MnCl2(139-00722)。

【參考文獻】

· ?Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

· ?PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

· ?Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

· ?Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

· ?Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

· ?Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

· ?Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

· ?Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

· ?The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

· ?Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

· ?Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

· ?Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

· ?Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

· ?Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

· ?A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

· ?Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

· ?ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

· ?Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

· ?Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

· ?A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

· ?The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

· ?Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

· ?Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

· ?Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

· ?AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

· ?Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

· ?Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

· ?The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

· ?The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

· ?Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

· ?The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

· ?Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

· ?Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesj? A, Brings S, Fleming T, et al.

· ?Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

· ?Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

· ?Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

· ?Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

· ?Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

· ?PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

· ?Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

· ?The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

· ?An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

· ?Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

· ?BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

· ?Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

· ?Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

· ?Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

· ?Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

· ?Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

· ?Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

· ?Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

· ?Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

· ?ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

· ?The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

· ?Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

· ?Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

· ?Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

· ?Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

· ?Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

· ?Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

· ?Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

· ?Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

· ?Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha í L, Roque A C A.

· ?In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

· ?Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

· ?Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

· ?The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

· ?Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

· ?Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

· ?a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

· ?Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

· ?PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

· ?Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

· ?Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

· ?Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

· ?Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

· ?The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

· ?Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

· ?ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

· ?Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

· ?The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, álvarez-García G, et al.

· ?Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,H?rnschemeyer P, Liss V, Heermann R, et al.

· ?Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

· ?p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

· ?Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

· ?Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

· ?Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

· ?Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

· ?Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

· ?Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

· ?Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

· ?The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

· ?Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, ?abuz J, Hermanowicz P, et al.

· ?Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

· ?Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

· ?Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

· ?DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

· ?OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

· ?Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

· ?Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

· ?Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

· ?Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

· ?Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

· ?Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

· ?A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

· ?Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

· ?Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

· ?Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

· ?Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

· ?Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

· ?PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

· ?A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

· ?HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

· ?Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

· ?Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.

References on Phos-tag™ Chemistry

· ??Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture molecule,?Rapid Communications of Mass Spectrometry,?17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike ?

· ?Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complex,?Dalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

· ?Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule,?Journal of Lipid Research,?45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

· ??Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/Transacylase,?Journal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

· ?Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins,?Journal of Separation Science,?28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike